Narzędzia osobiste
Jesteś w: Start Groups Strefa dla członków PTKr Teksty ewolucjonistyczne (nie związane ze sporem) 2005 W. Martin, "Molecular evolution: Lateral gene transfer and other possibilities" (2005)

W. Martin, "Molecular evolution: Lateral gene transfer and other possibilities" (2005)

"Heredity" June 2005, Volume 94, Number 6, Pages 565-566; http://www.nature.com/cgi-taf/DynaPage.taf?file=/hdy/journal/v94/n6/full/6800659a.html


> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Molecular evolution: Lateral gene transfer and other<br>                       possibilities

                      W Martin1

                      1The Institute of Botany, University of Düsseldorf, Germany
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Correspondence to: W Martin, e-mail: <a href="mailto:[email protected]">[email protected]<a>

                      Heredity (2005) 94, 565-566. doi:10.1038/sj.hdy.6800659
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Published online 30 March 2005<p>


> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Two recent reports suggesting that extensive lateral gene transfer occurs<br>                       among higher plants clash with our view of evolution as Darwin understood
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; it.<br>                       The concept of descent with modification has proven exquisitely robust, with
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; only two genuine mechanistic additions to Darwin's principles of natural<br>                       selection operating on variation among progeny, having emerged over the
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; last 150 years. One is endosymbiosis, where highly divergent lineages merge<br>                       outright, such as the origin of chloroplasts from cyanobacteria or the origin
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; of mitochondria from proteobacteria. The other is lateral, or horizontal, gene<br>                       transfer (LGT), where disparate lineages occasionally exchange parts of
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; their genetic fabric. Genome sequences have provided sound evidence that<br>                       both endosymbiosis among eukaryotes, and LGT - among prokaryotes -
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; are indeed real, although there is still much debate as to just how frequently<br>                       either has occurred during evolution. That debate now continues.
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; In 2003, Bergthorsson's team reported sequences homologous to plant<br>                       mitochondrial DNA (mtDNA) from a variety of species, obtained using
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; polymerase chain reaction (PCR) with conserved primers against<br>                       protein-coding regions of plant mtDNA. As some sequences in the
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; phylogenies branched in very unusual positions, the authors concluded that<br>                       frequent lateral transfer of mitochondrial DNA between distantly related
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; plants had caused this pattern. Viruses, bacteria, fungi, insects, pollen, even<br>                       meteorites and grafting were suggested as vectors for this exchange
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (Bergthorsson et al, 2003). The authors provided a figure showing genes<br>                       being laterally transferred not only between species but also from ancient
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; lineages in the past to more recent lineages, interpretations that 'imply the<br>                       existence of the transferred gene in an intermediate, unidentified
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; vectoring agent or host plant for millions of years' (Bergthorsson et al,<br>                       2003) - yet without mutation, one should add. Several of the unsually
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; branching sequences involved the shrubby flowering plant Amborella<br>                       trichopoda, prompting a more extensive search among DNA samples from
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; this species.<br>                       That follow-up study on Amborella has now appeared (Bergthorsson et al,
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2004) and is no less eyebrow-raising. Conserved primers were designed for<br>                       the 31 protein-coding genes typical of higher plant mtDNA. In total, 20 of
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; the 31 primer pairs generated two or more different PCR amplification<br>                       products with Amborella DNA as the substrate and these mutiple products
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; branched in disparate parts of the trees. Bergthorsson et al (2004)<br>                       interpreted this as evidence for 'massive' LGT from a myriad of higher plant
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; donors, and concluded that Amborella mtDNA 'has sustained<br>                       proportionately more HGT than any other eukaryotic, or perhaps even
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; prokaryotic, genome yet examined'. If true, this would be an<br>                       unprecedented situation for three reasons. First, plant mitochondrial genome
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; sequences have not yet provided evidence for the acquisition of genes from<br>                       other species (Bergthorsson et al, 2004). Second, the Amborella
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; chloroplast genome sequence reveals no acquisitions from other species<br>                       (Goremykin et al, 2003). Third, no reports of widespread lateral acquisition
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; from various higher plant donors have emerged from any plant nuclear<br>                       genome sequenced so far. Is there really something special about
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Amborella that makes it an LGT-haven? Is higher plant mtDNA hopping<br>                       among species faster than we can sequence it? Or are there possible
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; alternative interpretations of the observations other than LGT?<br>                       If we exclude DNA contamination from other sources as a possible factor in
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; their results, as Bergthorsson's team (2003, 2004) did, we can still ask what<br>                       positive evidence there is that the sequences in question are indeed
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; incorporated in the Amborella mtDNA or nuclear genome to substantiate<br>                       the LGT case. Specific hybridisation and cloning of the noncoding regions
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; flanking the amplified sequences would have offered the opportunity to see<br>                       how and where the LGT candidate sequences were integrated in
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; unequivocally endogenous Amborella DNA. Flanking sequences as specific<br>                       probes are needed in the case of plant mtDNA because it evolves at an
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; inexplicably slow rate: across the deepest comparisons of flowering plants,<br>                       sequences of mtDNA coding regions are typically 95% identical or more at
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; the nucleotide level and hence will crosshybridise. However, these studies<br>                       only reported the conserved reading frame sequences, without any flanking
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; regions or integration sites, leaving their chromosomal and intracellular<br>                       location - mitochondrion or nucleus - open, although Bergthorsson and
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; team (2004) favour a mitochondrial localisation. This could have been<br>                       clarified by a complete mitochondrial genome sequence for Amborella,
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; contiguous linkage between the LGT candidates and bona fide mtDNA<br>                       isolated from organelles, or in situ hybridisation with specific probes.
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Indeed, the recently published mitochondrial genome sequence for tobacco<br>                       (Sugiyama et al, 2005) revealed that several genes previously reported to
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; have been lost from that genome and transferred to the nucleus are in fact<br>                       present in the mtDNA, underscoring the value of complete genome data in
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; assessing subcellular gene localisation.<br>                       There is also the possibility that the unusual PCR products from Amborella
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; stem from substrates somewhere in its genome, but that the unusual trees are<br>                       not due to LGT. Those who study animal mitochondrial DNA have long
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; known that nuclear pseudogenes of mitochondrial DNA often have unusual<br>                       sequences (Bensasson et al, 2001). Such nuclear pseudogenes of mtDNA
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; are called 'numts' and have been found in large numbers in most sequenced<br>                       eukaryotic genomes, particularly among plants (Richly and Leister, 2004).
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Thalmann et al (2004) recently showed that numts in primates are a serious<br>                       problem because they are readily, sometimes even preferentially, amplified
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; over genuine mtDNA, even though the organelle copy is present in larger<br>                       template numbers. Numts are extremely difficult to distinguish from bona
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; fide mtDNA (Bensasson et al, 2001; Thalmann et al, 2004, 2005) and can<br>                       produce very unusual branching patterns in phylogenetic trees causing
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; primate species to apparently intermingle (Thalmann et al, 2004) in a<br>                       pattern that would suggest rampant LGT, were the identity of the bona fide
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mtDNA and the numt not known.<br>                       The levels of sequence differences between higher plant mtDNA from
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; different orders are low, less than that observed between human and chimp<br>                       mtDNAs. For example, the rps2 sequences representing the deeply
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; diverging dicot orders Laurales and Magnoliales - separated by roughly<br>                       150 million years (Bergthorsson et al, 2003) - have only two nucleotide
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; differences across 474 sites: G&nbsp; T transversions at positions 89 and 263.<br>                       The 1.2 kb-long atp1 sequences from the gymnosperm Ginkgo and the
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; angiosperm Illicium, separated by about 300 million years (Kim et al,<br>                       2004), have only 6% nucleotide differences (Bergthorsson et al, 2004). By
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; comparison, human and chimp sequences for the 1.8-kb long nad5 gene<br>                       from mtDNA have nearly twice as much (11%) differences. The extremely
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; low rate of substitution in higher plant mtDNA makes it amenable to using<br>                       conserved primers (Bergthorsson et al, 2003, 2004), but low numbers of
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; substitutions alone does not distinguish whether the PCR products obtained<br>                       are mtDNA or numts (Bensasson et al, 2001; Thalmann et al, 2004).
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Adding to these uncertainties is the issue of RNA editing, the C&nbsp; T<br>                       changes of which affect over 20 codons each in 10 different reading frames
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; of Arabidopsis mtDNA (Geige and Brennicke, 1999). Little is known<br>                       about the prevalence and among-gene distribution of mitochondrial editing in
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; other higher plant lineages. Other reports for plant-to-plant LGT have also<br>                       appeared recently (Won and Renner, 2003) but they, too, involved
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; exclusively mtDNA and very small numbers of remarkably distributed<br>                       sequence differences. There is also the issue of current phylogenetic
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; methods themselves, which are anything but error-free (Holland et al,<br>                       2004).
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; None of this is to say that the mechanisms and amounts of LGT inferred in<br>                       the recent findings from plant mtDNA cannot be true. However, the
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; inferences of LGT via meterorites, LGT from the past to the present, and<br>                       more frequent LGT among shrubs than among prokaryotes are rather
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; surprising. It is prudent, therefore, to consider possible alternative<br>                       explanations. After all, dinosaur bone DNA once caused quite a stir, but it
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; turned out to be a numt (Zischler et al, 1995). Thus, it will be of interest to<br>                       see this new LGT evidence corroborated by independent experimental
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; approaches that circumvent PCR and to see its biological significance for the<br>                       process of heredity among the organisms in question.

                      References

                      Bensasson D et al (2001). Trends Ecol Evol 16: 314-321. Article PubMed

                      Bergthorsson U et al (2003). Nature 424: 197-201. Article PubMed

                      Bergthorsson U et al (2004). Proc Natl Acad Sci USA 101: 17747-17752. Article
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; PubMed<p>

                      Geige P, Brennicke A (1999). Proc Natl Acad Sci USA 96: 15324-15329. Article
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; PubMed<p>

                      Goremykin VV et al (2003). Mol Biol Evol 20: 1499-1505. Article PubMed

                      Holland BR et al (2004). Mol Biol Evol 21: 1459-1461. Article PubMed

                      Kim S et al (2004). Am J Bot 91: 2102-2118.

                      Richly E, Leister D (2004). Mol Biol Evol 21: 1081-1084. Article PubMed

                      Sugiyama Y et al (2005). Mol Genet Genom 272: 603-615. Article

                      Thalmann O et al (2004). Mol Ecol 13: 321-335. Article PubMed

                      Thalmann O et al (2005). Mol Ecol 14: 179-188. Article PubMed

                      Won H, Renner SS (2003). Proc Natl Acad Sci USA 100: 10824-10829. Article
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; PubMed<p>

                      Zischler H et al (1995). Science 268: 1192-1193. PubMed

                      Further Reading

                      Hay JM, Sarre SD, Daugherty CH (2004). Nuclear mitochondrial pseudogenes as
> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; molecular outgroups for phylogenetically isolated taxa: a case study in Sphenodon.<br>                       Heredity 93: 468-475.

                      A rebuttal by Palmer et al is available at http://www.nature.com/hdy .

 


> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; June 2005, Volume 94, Number 6, Pages 565-566<p>

Akcje Dokumentu
« Grudzień 2024 »
Grudzień
PnWtŚrCzPtSbNd
1
2345678
9101112131415
16171819202122
23242526272829
3031